Bioengineers and Biomedical Engineers
Career, Salary and Education Information
What They Do: Bioengineers and biomedical engineers combine engineering principles with sciences to design and create equipment, devices, computer systems, and software.
Work Environment: Bioengineers and biomedical engineers work in manufacturing, in research facilities, and for a variety of other employers. Most work full time, and some work more than 40 hours per week.
How to Become One: Bioengineers and biomedical engineers typically need a bachelor’s degree in bioengineering or biomedical engineering or in a related engineering field. Some positions require a graduate degree.
Salary: The median annual wage for bioengineers and biomedical engineers is $97,410.
Job Outlook: Employment of bioengineers and biomedical engineers is projected to grow 10 percent over the next ten years, faster than the average for all occupations.
Related Careers: Compare the job duties, education, job growth, and pay of bioengineers and biomedical engineers with similar occupations.
Following is everything you need to know about a career as a Bioengineer or Biomedical Engineer with lots of details. As a first step, take a look at some of the following jobs, which are real jobs with real employers. You will be able to see the very real job career requirements for employers who are actively hiring. The link will open in a new tab so that you can come back to this page to continue reading about the career:
Top 1 Bioengineer Jobs
-
Faculty Positions in the William States Lee College of Engineering
- University of North Carolina at Charlotte
- Charlotte, NC
... bioengineering /biomedical engineering. The positions will be housed in either the departments of Electrical and Computer Engineering or Mechanical Engineering and Engineering Science. We are ...
Top 3 Biomedical Engineer Jobs
-
Faculty Positions in the William States Lee College of Engineering
- University of North Carolina at Charlotte
- Charlotte, NC
Potential specific domain areas include, but are not limited to; biomaterials, bioelectronic interfaces, bio nano engineered systems, biomedical imaging/sensors, immunoengineering, molecular ...
-
Travel Sterile Processing Technician - $1,640 per week
- LanceSoft
- Bethpage, NY
Identifies malfunctioning items, records related information, and promptly notifies supervisor or biomedical engineer . Assists in ordering, stocking and maintaining department inventory levels
-
Physician Neurology-Pediatric - Competitive Salary
- CHOC Children's Hospital
- Orange, CA
Faculty members have also mentored biomedical engineers . Our multidisciplinary programs include a high-risk infant bridge clinic, Ketogenic Diet, and TSC Clinic with support from neuropsychology ...
What Bioengineers and Biomedical Engineers Do[About this section] [To Top]
Bioengineers and biomedical engineers combine engineering principles with sciences to design and create equipment, devices, computer systems, and software.
Duties of Bioengineers and Biomedical Engineers
Bioengineers and biomedical engineers typically do the following:
- Design equipment and devices, such as artificial internal organs, replacements for body parts, and machines for diagnosing medical problems
- Install, maintain, or provide technical support for biomedical equipment
- Collaborate with manufacturing staff on the safety and effectiveness of biomedical equipment
- Train clinicians and others on the proper use of biomedical equipment
- Work with scientists to research how engineering principles applyto biological systems
- Develop statistical models or simulations using statistical or modeling software
- Prepare procedures andwrite technical reports and research papers
- Present research findings to a variety of audiences, including scientists,clinicians, managers, otherengineers, and the public
- Design or conduct followup experiments as needed
Bioengineers and biomedical engineers frequently work in research and development or quality assurance.
The work of bioengineers spans many fields. For example, although their expertise is in engineering and biology, they often design computer software to run complicated instruments, such as three-dimensional x-ray machines. Others use their knowledge of chemistry and biology to develop new drug therapies. Still others draw on math and statistics to understand signals transmitted by the brain or heart. Some are involved in sales.
Biomedical engineers focus on advances in technology and medicine to develop new devices and equipment for improving human health. For example, they might design software to run medical equipment or computer simulations to test new drug therapies. In addition, they design and build artificial body parts, such as hip and knee joints, or develop materials to make replacement parts. They also design rehabilitative exercise equipment.
The following are examples of types of bioengineers and biomedical engineers:
Biochemical engineers focus on cell structures and microscopic systems to create products for bioremediation, biological waste treatment, and other uses.
Bioinstrumentation engineers use electronics, computer science, and measurement principles to develop tools for diagnosing and treating medical problems.
Biomaterials engineers study naturally occurring or laboratory-designed substances for use in medical devices or implants.
Biomechanics engineers study thermodynamics and other systems to solve biological or medical problems.
Clinical engineers apply medical technology to improve healthcare.
Genetic engineers alter the genetic makeup of organism using recombinant deoxyribonucleic acid (rDNA) technology, such as in developing vitamin-fortified food crops to prevent disease in humans.
Rehabilitation engineers develop devices that aid people who are recovering from or adapting to physical or cognitive impairments.
Systems physiologists use engineering tools to understand how biological systems function and respond to changes in their environment.
Other bioengineering occupations are described in separate profiles; see, for example, chemical engineers and agricultural engineers. Some people with training in biomedical engineering become postsecondary teachers.
Work Environment for Bioengineers and Biomedical Engineers[About this section] [To Top]
Bioengineers and biomedical engineers hold about 17,900 jobs. The largest employers of biomedical engineers are as follows:
Research and development in the physical, engineering, and life sciences | 28% |
Medical equipment and supplies manufacturing | 14% |
Healthcare and social assistance | 8% |
Navigational, measuring, electromedical, and control instruments manufacturing | 7% |
Colleges, universities, and professional schools; state, local, and private | 5% |
Bioengineers and biomedical engineers work on teams with scientists, healthcare workers, or other engineers. Where and how they work depends on the project. For example, a biomedical engineer who has developed a new device might spend hours in a hospital to ensure that the device works as planned. If the device needs adjusting, the engineer might need to suggest alterations in the manufacturing process.
Biomedical Engineer Work Schedules
Most bioengineers and biomedical engineers work full time, and some work more than 40 hours per week.
How to Become a Biomedical Engineer[About this section] [To Top]
Get the education you need: Find schools for Bioengineers and Biomedical Engineers near you!
Bioengineers and biomedical engineers typically need a bachelor’s degree in bioengineering, biomedical engineering, or a related engineering field. Some positions require a graduate degree.
Education for Bioengineers and Biomedical Engineers
Bioengineers and biomedical engineers typically need a bachelor's degree in bioengineering, biomedical engineering, or a related engineering field. Some positions require a graduate degree.
In high school, students interested in becoming bioengineers or biomedical engineers should take classes in sciences such as chemistry, physics, and biology. They should also study math, including algebra, geometry, trigonometry, and calculus. If available, classes in drafting, mechanical drawing, and computer programming are also useful.
At the bachelor's degree level, prospective bioengineers should enter bioengineering or traditional engineering programs, such as mechanical and electrical. Students who pursue traditional engineering degrees may benefit from taking biological science courses.
Bachelor's degree programs in bioengineering and biomedical engineering focus on engineering and biological sciences. These programs typically include laboratory- and classroom-based courses in biological sciences and subjects such as fluid and solid mechanics, circuit design, and biomaterials.
These programs also include substantial training in engineering design. As part of their study, students may have an opportunity to participate in co-ops or internships with hospitals and medical device and pharmaceutical manufacturing companies. Bioengineering and biomedical engineering programs are accredited by ABET.
Important Qualities for Bioengineers and Biomedical Engineers
Analytical skills. Bioengineers and biomedical engineers must assess the needs of patients and customers prior to designing products.
Communication skills. Because bioengineers and biomedical engineers sometimes work with patients and customers and frequently work on teams, they must be able to express themselves clearly in discussions. They also write reports and research papers.
Creativity. Bioengineers and biomedical engineers must be creative to come up with innovations in healthcare equipment and devices.
Math skills. Bioengineers and biomedical engineers use calculus and other advanced math and statistics for analysis, design, and troubleshooting in their work.
Problem-solving skills. Bioengineers and biomedical engineers typically deal with intricate biological systems. They must be able to work independently and with others to incorporate ideas into the complex problem-solving process.
Advancement for Bioengineers and Biomedical Engineers
Bioengineers and biomedical engineers may increase their responsibilities as they gain experience or advanced degrees. To lead a research team, a bioengineer or biomedical engineer typically needs a graduate degree. Those who are interested in basic research may become medical scientists.
Some bioengineers attend medical or dental school to specialize in techniques such as using electric impulses in new ways to get muscles moving again. Others earn law degrees and work as patent attorneys. Still others pursue a master's degree in business administration (MBA) and move into managerial positions. For more information, see the profiles on lawyers and architectural and engineering managers.
Biomedical Engineer Salaries[About this section] [More salary/earnings info] [To Top]
Salary Calculator
Entry Level Experienced
The median annual wage for bioengineers and biomedical engineers is $97,410. The median wage is the wage at which half the workers in an occupation earned more than that amount and half earned less. The lowest 10 percent earned less than $60,680, and the highest 10 percent earned more than $154,750.
The median annual wages for bioengineers and biomedical engineers in the top industries in which they work are as follows:
Navigational, measuring, electromedical, and control instruments manufacturing | $104,050 |
Research and development in the physical, engineering, and life sciences | $98,610 |
Medical equipment and supplies manufacturing | $97,090 |
Healthcare and social assistance | $79,400 |
Colleges, universities, and professional schools; state, local, and private | $62,650 |
Most bioengineers and biomedical engineers work full time, and some work more than 40 hours per week.
Job Outlook for Bioengineers and Biomedical Engineers[About this section] [To Top]
Employment of bioengineers and biomedical engineers is projected to grow 10 percent over the next ten years, faster than the average for all occupations.
About 1,200 openings for bioengineers and biomedical engineers are projected each year, on average, over the decade. Many of those openings are expected to result from the need to replace workers who transfer to different occupations or exit the labor force, such as to retire.
Employment of Bioengineers and Biomedical Engineers
Bioengineers and biomedical engineers are expected to see employment growth because of increasing technologies and their applications to medical equipment and devices. Smartphone technology and three-dimensional printing are examples of technology being applied to biomedical advances.
As the baby-boom generation lives longer and stays active, the demand for bioengineers and biomedical devices and procedures, such as hip and knee replacements, is expected to increase. In addition, as the public awareness of medical advances continues, increasing numbers of people will seek biomedical solutions to their health problems from their physicians.
Bioengineers and biomedical engineers work with scientists, other medical researchers, and manufacturers to address a range of injuries and physical disabilities. The ability of these engineers to collaborate on activities with workers from other fields is enlarging the range of applications for biomedical engineering products and services.
Occupational Title | Employment, 2021 | Projected Employment, 2031 | Change, 2021-31 | |
---|---|---|---|---|
Percent | Numeric | |||
Bioengineers and biomedical engineers | 17,900 | 19,700 | 10 | 1,700 |
More Biomedical Engineer Information[About this section] [To Top]
For information about general engineering education and biomedical engineering career resources, visit
American Institute for Medical and Biological Engineering
American Society for Engineering Education
Biomedical Engineering Society
IEEE Engineering in Medicine and Biology Society
Technology Student Association
For information about accredited engineering programs, visit
A portion of the information on this page is used by permission of the U.S. Department of Labor.