Chemical Engineers
Career, Salary and Education Information
What They Do: Chemical engineers apply the principles of chemistry, biology, physics, and math to solve problems that involve the use of fuel, drugs, food, and many other products.
Work Environment: Chemical engineers work mostly in offices or laboratories. They may spend time at industrial plants, refineries, and other locations, where they monitor or direct operations or solve onsite problems. Nearly all chemical engineers work full time.
How to Become One: Chemical engineers must have a bachelor’s degree in chemical engineering or a related field. Employers also value practical experience. Therefore, internships and cooperative engineering programs can be helpful.
Salary: The median annual wage for chemical engineers is $105,550.
Job Outlook: Employment of chemical engineers is projected to grow 14 percent over the next ten years, much faster than the average for all occupations.
Related Careers: Compare the job duties, education, job growth, and pay of chemical engineers with similar occupations.
Following is everything you need to know about a career as a Chemical Engineer with lots of details. As a first step, take a look at some of the following Chemical Engineer jobs, which are real jobs with real employers. You will be able to see the very real job career requirements for employers who are actively hiring. The link will open in a new tab so that you can come back to this page to continue reading about the career:
Top 3 Chemical Engineer Jobs
-
Physician Neurology - Competitive Salary
- Biodynamic Research Corporation
- San Antonio, TX
Qualified physicians will have a bachelor's level or higher in Biomechanical, Aerospace, Biomedical, Mechanical, Electrical, or Chemical Engineering areas and will have practiced in Orthopedics ...
-
Senior Commissioning Engineer
- BP Energy
- Denver, CO
Bachelor of Science in Mechanical, Chemical , or Petroleum Engineering preferred. BS in Science considered * PE Certification optional Crucial Experience and Desired Criteria · Minimum of 3 years of ...
-
Engineering Estimator - Machining (AZ)
- FM Industries
- Tempe, AZ
Demonstrated commitment in the successful EH&S management of chemical processes and facilities. Engineering Estimator -Machining EDUCATION AND/OR EXPERIENCE REQUIRED: * Prior experience in cost ...
What Chemical Engineers Do[About this section] [To Top]
Chemical engineers apply the principles of chemistry, biology, physics, and math to solve problems that involve the production or use of chemicals, fuel, drugs, food, and many other products. They design processes and equipment for large-scale manufacturing, plan and test production methods and byproducts treatment, and direct facility operations.
Duties of Chemical Engineers
Chemical engineers typically do the following:
- Conduct research to develop new and improved manufacturing processes
- Establish safety procedures for those working with dangerous chemicals
- Develop processes for separating components of liquids and gases, or for generating electrical currents, by using controlled chemical processes
- Design and plan the layout of equipment
- Conduct tests and monitor the performance of processes throughout production
- Troubleshoot problems with manufacturing processes
- Evaluate equipment and processes to ensure compliance with safety and environmental regulations
- Estimate production costs for management
Some chemical engineers, known as process engineers, specialize in a particular process, such as oxidation (a reaction of oxygen with chemicals to make other chemicals) or polymerization (making plastics and resins).
Others specialize in a particular field, such as nanomaterials (extremely small substances) or biological engineering. Still others specialize in developing specific products.
In addition, chemical engineers work in the production of energy, electronics, food, clothing, and paper. They must understand how the manufacturing process affects the environment and the safety of workers and consumers.
Chemical engineers also conduct research in the life sciences, biotechnology, and business services.
Work Environment for Chemical Engineers[About this section] [To Top]
Chemical engineers hold about 26,900 jobs. The largest employers of chemical engineers are as follows:
Research and development in the physical, engineering, and life sciences | 11% |
Engineering services | 11% |
Petroleum and coal products manufacturing | 5% |
Wholesale trade | 4% |
Pharmaceutical and medicine manufacturing | 3% |
Chemical engineers work mostly in offices or laboratories. They may spend time at industrial plants, refineries, and other locations, where they monitor or direct operations or solve onsite problems. Chemical engineers must be able to work with those who design other systems and with the technicians and mechanics who put the designs into practice.
Some engineers travel extensively to plants or worksites, both domestically and abroad.
Injuries and Illnesses
Chemical engineers can be exposed to health or safety hazards when handling certain chemicals and plant equipment, but such exposure can be avoided if proper procedures are followed.
Chemical Engineer Work Schedules
Nearly all chemical engineers work full time. Occasionally, they may have to work additional hours to meet production targets and design standards or to troubleshoot problems with manufacturing processes. About 2 out of 5 chemical engineers work more than 40 hours per week.
How to Become a Chemical Engineer[About this section] [To Top]
Get the education you need: Find schools for Chemical Engineers near you!
Chemical engineers must have a bachelor's degree in chemical engineering or a related field. Employers also value practical experience, so internships and cooperative engineering programs, in which students earn college credit and experience, can be helpful.
Education for Chemical Engineers
Chemical engineers must have a bachelor's degree in chemical engineering or a related field. Programs in chemical engineering usually take 4 years to complete and include classroom, laboratory, and field studies. High school students interested in studying chemical engineering will benefit from taking science courses, such as chemistry, physics, and biology. They also should take math courses, including algebra, trigonometry, and calculus.
At some universities, students can opt to enroll in 5-year engineering programs that lead to both a bachelor's degree and a master's degree. A graduate degree, which may include a degree up to the Ph.D. level, allows an engineer to work in research and development or as a postsecondary teacher.
Some colleges and universities offer internships and/or cooperative programs in partnership with industry. In these programs, students gain practical experience while completing their education.
ABET accredits engineering programs. ABET-accredited programs in chemical engineering include courses in chemistry, physics, and biology. These programs also include applying the sciences to the design, analysis, and control of chemical, physical, and biological processes.
Important Qualities for Chemical Engineers
Analytical skills. Chemical engineers must troubleshoot designs that do not work as planned. They must ask the right questions and then find answers that work.
Creativity. Chemical engineers must explore new ways of applying engineering principles. They work to invent new materials, advanced manufacturing techniques, and new applications in chemical and biomedical engineering.
Ingenuity. Chemical engineers learn the broad concepts of chemical engineering, but their work requires them to apply those concepts to specific production problems.
Interpersonal skills. Because their role is to put scientific principles into practice in manufacturing industries, chemical engineers must develop good working relationships with other workers involved in production processes.
Math skills. Chemical engineers use the principles of advanced math topics such as calculus for analysis, design, and troubleshooting in their work.
Problem-solving skills. In designing equipment and processes for manufacturing, these engineers must be able to anticipate and identify problems, including such issues as workers' safety and problems related to manufacturing and environmental protection.
Licenses, Certifications, and Registrations for Chemical Engineers
Licensure for chemical engineers is not as common as it is for other engineering occupations, nor is it required for entry-level positions. A Professional Engineering (PE) license, which allows for higher levels of leadership and independence, can be acquired later in one's career. Licensed engineers are called professional engineers (PEs). A PE can oversee the work of other engineers, sign off on projects, and provide services directly to the public. State licensure generally requires
- A degree from an ABET-accredited engineering program
- A passing score on the Fundamentals of Engineering (FE) exam
- Relevant work experience, typically at least 4 years
- A passing score on the Professional Engineering (PE) exam
The initial FE exam can be taken after one earns a bachelor's degree. Engineers who pass this exam are commonly called engineers in training (EITs) or engineer interns (EIs). After meeting work experience requirements, EITs and EIs can take the second exam, called the Principles and Practice of Engineering (PE).
Each state issues its own licenses. Most states recognize licensure from other states, as long as the licensing state's requirements meet or exceed their own licensure requirements. Several states require engineers to take continuing education to keep their licenses.
Other Experience for Chemical Engineers
During high school, students can attend engineering summer camps to see what these and other engineers do. Attending these camps can help students plan their coursework for the remainder of their time in high school.
Advancement for Chemical Engineers
Entry-level engineers usually work under the supervision of experienced engineers. In large companies, new engineers also may receive formal training in classrooms or seminars. As junior engineers gain knowledge and experience, they move to more difficult projects with greater independence to develop designs, solve problems, and make decisions.
Eventually, chemical engineers may advance to supervise a team of engineers and technicians. Some may become architectural and engineering managers. Preparing for management positions usually requires working under the guidance of a more experienced chemical engineer.
An engineering background enables chemical engineers to discuss a product's technical aspects and assist in product planning and use. For more information, see the profile on sales engineers.
Chemical Engineer Salaries[About this section] [More salary/earnings info] [To Top]
Salary Calculator
Entry Level Experienced
The median annual wage for chemical engineers is $105,550. The median wage is the wage at which half the workers in an occupation earned more than that amount and half earned less. The lowest 10 percent earned less than $62,730, and the highest 10 percent earned more than $187,430.
The median annual wages for chemical engineers in the top industries in which they work are as follows:
Engineering services | $152,430 |
Petroleum and coal products manufacturing | $126,780 |
Research and development in the physical, engineering, and life sciences | $102,390 |
Wholesale trade | $100,290 |
Pharmaceutical and medicine manufacturing | $96,220 |
A 2015 survey report by the American Institute of Chemical Engineers indicated that the median yearly salary of those with no supervisory responsibility was $106,300.
Nearly all chemical engineers work full time. Occasionally, they may have to work additional hours to meet production targets and design standards or to troubleshoot problems with manufacturing processes. Some chemical engineers work more than 40 hours per week.
Job Outlook for Chemical Engineers[About this section] [To Top]
Employment of chemical engineers is projected to grow 14 percent over the next ten years, much faster than the average for all occupations.
About 2,200 openings for chemical engineers are projected each year, on average, over the decade. Many of those openings are expected to result from the need to replace workers who transfer to different occupations or exit the labor force, such as to retire.
Employment of Chemical Engineers
Demand for chemical engineers’ services depends largely on demand for the products of various manufacturing industries. Many chemical engineers work in manufacturing firms that provide products to other firms. For example, environmental and sustainability concerns have led chemistry and manufacturing firms to research alternative fertilizers, resulting in a need for chemical engineers.
In addition, chemical engineering will continue to migrate into other fields, such as nanotechnology, alternative energies, and biotechnology, and thereby help to sustain demand for engineering services in many manufacturing industries.
Occupational Title | Employment, 2021 | Projected Employment, 2031 | Change, 2021-31 | |
---|---|---|---|---|
Percent | Numeric | |||
Chemical engineers | 26,900 | 30,700 | 14 | 3,700 |
More Chemical Engineer Information[About this section] [To Top]
For more information on becoming a chemical engineer, visit
American Institute of Chemical Engineers
For information about general engineering education and career resources, visit
American Society for Engineering Education
Technology Student Association
For information about accredited engineering programs, visit
For information on internships opportunities, visit
American Institute of Chemical Engineers Career Center
For more information about licensure as a professional engineer, visit
A portion of the information on this page is used by permission of the U.S. Department of Labor.